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ABSTRACT 

We study pro-'finite dimensional finite exponent' completions of restricted 

Lie Mgebras over finite fields of characteristic p. These compact Hausdorff 

topological restricted Lie algebras, cMled pro-.T'p restricted Lie ~lgebras, 

are the restricted Lie-theoretic analogues of pro-p groups. A structure 

theory for pro-Srp restricted Lie Mgebras with finite rank is developed. 

In particular, the centre of such a Lie algebra is shown to be open. As 

an application we examine p-adic analytic pro-p groups in terms of their 

associated pro-Srp restricted Lie algebras. 

1. I n t r o d u c t i o n  

We propose to study a class of topological restricted Lie algebras which are 

the analogues of pro-p groups. Consider the class .~p of all finite dimensional re- 

stricted Lie algebras over a finite field of characteristic p whose p-map is nilpotent. 

A restricted ideal I of a restricted Lie algebra L is said to be an ~-p-ideal if L/I 
lies in the class ~rp. A pro-~'p r e s t r i c t ed  Lie a lgebra  is a compact Hausdorff 

topological restricted Lie algebra L whose open ~p-ideals form a neighbourhood 

base of 0. For the sake of brevity, we refer to pro-~p restricted Lie algebras as 

pro-p a lgebras  hereafter. We shall see that  the analogy between pro-p groups 

and pro-p algebras often bears close scrutiny. The reader is referred to the recent 

monograph of Dixon, du Sautoy, Mann and Segal, [DDMS], for an exposition on 

pro-p groups and several of their applications to abstract group theory. 
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The primary focus of our investigation will be to determine the structure of 

topologically finitely generated pro-p algebras. Specifically, we are interested in 

pro-p algebras with finite rank. For our purposes, the r a n k  of a topological 

algebra A is the minimum number r such that every closed finitely generated 

subalgebra of A can be topologically generated by r elements. If r < oc then A 

is said to have f in i te  rank .  Our main results are somewhat reminiscent of those 

due to Lubotzky and Mann, [LM2], concerning pro-p groups of finite rank. We 

show that a finitely generated pro-p algebra L has finite rank precisely when its 

centre is open. Moreover, in this case L contains a central restricted subalgebra 

U which has the structure of a finitely generated free abelian pro-p algebra. The 

rank of U is an invariant of L, which we shall refer to as the u n i f o r m  d i m e n s i o n  

of L. 

Before proving these results, we examine pro-p algebras more generally. First 

we use a theorem of Witt 's  to demonstrate that an open restricted subalgebra of 

a finitely generated pro-p algebra is finitely generated. Continuing in the lines of 

Lincoln and Towers, [LT], we then characterise the Frattini subalgebra of a pro-p 

algebra, which in turn we use to show that  the topology of a finitely generated 

pro-p algebra is uniquely determined by its algebraic structure. Subsequently, 

we are able to reduce the study of p r o p  algebras with finite rank to the study 

p o w e r f u l  p r o p  algebras, which are nilpotent of class at most two. 

In the concluding section we apply our theory to finitely generated p r o p  

groups. Let £(G) = I-Im>l Dm(G)/Dm+I(G) ,  where D,~(G) is the mth dimen- 

sion subgroup of G over Fp. Then £(G) is the a s so c i a t ed  p r o p  a l g e b r a  of G. 

We show, for example, that G is p-adic analytic if and only if £(G)  has finite 

rank. Moreover, in this case the uniform dimension of £(G) equals the dimension 

of G. These results are then employed to obtain a quantitative version of a the- 

orem due to Lazard, [L2], and Shalev, [S], who proved that a finitely generated 

pro-p group G has finite rank if and only if £(G) is nilpotent. 

2. Definitions 

Let L be a Lie algebra over a field F of characteristic p > 0. We shall assume 

throughout that  F is finite. Denote the Lie product by (x, y) ~ [x, y]. Recall that  

L is a r e s t r i c t e d  Lie  a lgebra ,  or Lie  p-a lgebra ,  if it affords a unary operation 

x ~ x p satisfying 

1. ()~x) p = )~Px p when ~ E F, x E L; 
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2. adx  p = (adx)P; and 

3. (x + y)P = x p + yP + ~ i  si(x, y), 

where isi(x,y) is the coefficient of t i-1 in ad(tx + y)p-l(x). Jacobson provides 

an introduction to Lie p-algebras in his book [J]. We say that L is a topolog-  

ical Lie p-a lgebra  if it is also a topological space such that  the operations of 

addition, scalar multiplication, Lie multiplication, and exponentiation by p are 

all continuous. See van der Waerden, [vdW], for an introduction to topological 

algebras. 

Following Strade and Farnsteiner, [SF], a subalgebra H of L is called a/9. 

suba lgeb ra  if H is closed under the p-map. We say that a Lie p-algebra is gen- 

e r a t e d  by a subset X if the smallest p-subalgebra containing X is L. Let L {pk} 

denote the set ofpkth powers of elements of L, and let L pk be the p-subalgebra it 

generates. We write ((L) for the centre of L. The left-normed convention is used 

for longer commutators: inductively Ix0, . . . ,  xn-1, x~] = [[x0 . . . . .  xn-1], x~]. For 

n > 2 we set [xm y] = [x,,~-i y, y]. As usual, we let "~i(L) denote the ith term 

of the lower central series of L. We often write L' for 72(L). Finally, open and 

closed p-subalgebras are denoted by _<o and _<c, respectively. 

Detlnition 2.1: A Lie p-algebra L is said to be p -n i lpo ten t  if there is a positive 

integer k such that  L pk = 0. If k is minimal then pk is the e x p o n e n t  of L. Then 

$'p is the class of all p-nilpotent finite dimensional Lie p-algebras over F. Recall 

that a p-ideal I of L is an 5rp-ideal if L / I  lies in the class ~-~. | 

Notice that  Engel's Theorem implies that L is nilpotent if it lies in 3cp. 

Definition 2.2: Let A be a directed set of JCp-ideals of L, ordered by reverse 

inclusion. Then {L/I}IeA, together with the natural epimorphisms, forms an 

inverse system over A. The pro-.Tp comple t i on  of  L w i t h  respec t  to  A is the 

topological Lie p-algebra given by 

L = lim(L/I)ieA. 

The topology imposed on L is that induced by the discrete topology on the 

factors. | 

Recall from Section 1 the definition of a pro-p algebra: 

Detlnition 2.3: A pro-p a lgebra  is a compact Hausdorff topological Lie p- 

algebra whose open 9rp-ideals form a neighbourhood base for 0. | 
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In fact, these last two definitions give rise to the same class of topological Lie 

p-algebras: the pro-~'p completion of a Lie p-algebra is a pro-p algebra, and vice 

versa. This follows from standard topological arguments which are identical to 

those used for p rop  groups. See [DDMS, pp. 21-22] for details. It is noteworthy 

that the field ~" is required to be finite precisely so that the underlying topology 

will be compact. 

In the next section we shall study some elementary consequences of the defi- 

nitions, but first let us consider the prototype for pro-p algebras. 

Example 2.4: Let A = (x} denote the free 1-generated Lie p-algebra over Fp, and 

let .4 denote its pro-$'p completion over the set of all 9rp-ideals. Then A. = Fp [[t]] 

where Fp [[t]], the set of formal power series over Fv, is viewed as a topological 

abelian Lie p-algebra with p-map induced by multiplication by t and topology 

induced by the valuation # :  Fp lit]] ~ Q given by 

adi) = { 0, if ai = 0 for all i; 
# ( E  p-J,  j = min{i [ ai ~ 0} otherwise. | 

Indeed, let us write A = ~k>o Fp xvk" It is not difficult to see that the 9Vp- 

ideals of A are precisely the sets of the form Im = t~k> m FpXV~; therefore, if 

.;i = limA~Ira then we may express each element a E A uniquely in the form- 

a = (a~(x))i> o, where hi(x) = cox + a l x  p + " "  + aix p'. Consider the map 

~: A. --* Fp [[t]] with ~(a) = ~ hit i. Then ~ is an isomorphism of topological Lie 

p-algebras. This follows from the fact that a E Fp implies that a p = a, so 

( E  a,x,')P = V Z, a' 

We shall see that .4 plays a role, in positive characteristic, similar to that 

played by the p-adic integers in the study of pro-p groups. 

3. E l e m e n t a r y  p rope r t i e s  

In this section we shall outline some elementary properties of pro-p algebras. The 

proofs of the first two propositions follow easily from the definitions. 

PROPOSITION 3.1: Let L be a pro-p algebra. 

1. A p-subalgebra of L is open if  and only i f  it is closed and of finite codimen- 

sion. 

2. The intersection of all open p-subalgebras is {0}. 
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3. Let X denote the closure of a subset X of L. Then X = NI~oL(X + I). 

Moreover, every closed p-subalgebra H is the intersection of all open p- 

subalgebras containing it. 

4. I f  X and Y are closed subsets and k a positive integer then the sets X + Y, 

{Ix, y][ x e X , y  e Y }  and {xV*[ x e X }  are closed. 

5. Let H be a closed p-subalgebra of L. Then H with the subspace topology 

is a pro-p algebra, and every open p-subalgebra of H is of the form H N K 

with K an open p-subalgebra of L. 

6. Let I be a closed p-ideal of L. Then L / I  is a pro-p algebra with topology 

induced by the natural homomorphism. 

7. We say that a sequence (hi) in L is C a u c h y  i f  for every 1 %  L there exists 

an n such that hi - hj E I whenever i >_ j >_ n. A sequence in L converges 

if and only i f  it is Cauchy. 

Definition 3.2: Let L be a topological Lie p-algebra and X C_ L. Denote by (X )  

the p-subalgebra of L generated by X.  Then X g e n e r a t e s  L ( topo log ica l ly )  

if ( X ) =  L. | 

PROPOSITION 3.3: Let L be a prop algebra and X C_ L. 

1. X generates i if  and only i f  ( ( X )  + I ) / I  = i / I  for every I%L.  

2. L is d-generated i f  and only if  L / I is d-generated for every 1 %  L. 

We may now establish the pro-p algebraic analogue of a theorem due to Witt,  

who proved that  a p-subalgebra of codimension r < c¢ in an n-generated Lie 

p-algebra is generated by m = pr(n - 1) + 1 elements. See for example Bahturin, 

[B, pp. 68-69], for a proof. 

THEOREM 3.4: Let L be an n-generated prop algebra and let H be an open 

p-subalgebra of codimension r. Then H is p~(n - 1) + 1-generated. 

Proof'. For all I %  L, L / I  is n-generated and H + I / I  is of codimension at most 

r in L/ I .  Therefore by Witt 's  theorem H + I / I  is p~(n - 1) + 1-generated for 

each I. Thus, by Proposition 3.3, H is p~(n - 1) + 1-generated. | 

In light of this result, we may define the rank of a pro-p algebra as follows. 

Definition 3.5: Let L be a pro-p algebra, and let d(L) denote the minimal car- 

dinality of a generating set of L. If there exists an integer r such that  d(H) < r 
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for every open p-subalgebra H of L, then the least such r is the called the r a n k  

of L; otherwise L is said to be of infinite rank. We denote r by rk(L). | 

Observe that L is finitely generated if it has finite rank. Equivalent definitions 

of rank are given in Proposition 6.1. 

4. F r a t t i n i  t h e o r y  for pro-p a lgebras  

Presently we examine the Frattini p-subalgebra of a pro-p algebra. It transpires 

that this subalgebra is a closed p-ideal which is open precisely when L is finitely 

generated. 

Definition 4.1: Let L be a pro-p algebra. The F r a t t i n i  p - suba lgebra  ¢(L)  is 

defined to be the intersection of all maximal open p-subalgebras of L. | 

LEMMA 4.2: Let L be a prop algebra. 

1. f i X  + ¢(L)  generates L then X generates L. 

2. d(L)=dimL/q~(L).  

The proof is standard. See Amayo and Stewart, [AS], pp. 241-242. 

COROLLARY 4.3: A prop algebra L is finitely generated it" and only if (I)(L) is 

open in L. 

Proof: Assume that (I)(L) is open, so that a vector space complement X of 

• (L) in L is a finite set. Because the Frattini p-ideal is the set of nongenerators 

of L, then L = (~:). Conversely, notice that (I)(L) is closed because it is the 

intersection of open p-subalgebras. Therefore if d(L) < co then (I)(L) is open by 

Proposition 3.1 and Lemma 4.2. II 

LEMMA 4.4: Let L be a prop algebra. Then q)(L) = LP + L ~. 

Proof" In [LT], Lincoln and Towers established this result in the case when L 

is ~'p. For the general case, assume that  I is an open p-ideal of L. Because 

q~(L/I) = ¢(L)  + I / I ,  we have q~(L) + I = L p + L' + I for all such I. Hence 

q~(L) = q~(L) = ~ (q~(L) + I) = N (LP + L' + I) = LP + L'. 
I~o L I,~o L 
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COROLLARY 4.5: I l L  is a finitely generated prop algebra then L' is closed and 

O(L) = L p + L'. 

Proo~ Suppose that { a l , . . . , a d }  generates L and let 1 %  L. Then 

d 
L' + I / I =  (L/ I ) '  = Z [ a , ,  L] + I / I .  

i----1 

Therefore L ---7 = ~i=l[ai,  L] = L' since each [ai, L] = (adai)L is closed. Now 

¢(L)  = LP + L I = L{P} + L I = L{p} + L I. | 

We now establish a useful result which implies that the topology on a finitely 

generated pro-p algebra is uniquely determined by its algebraic structure. 

THEOREM 4.6: Let L be a finitely generated pro-p algebra and I any Jzp-ideal. 

Then I is open. 

Proof'. We may assume by induction on d imL/ I  that I is open in J if J is any 

finitely generated pro-p algebra with I <_ J < L. Therefore it suffices to construct 

some proper open p-subalgebra J of L containing I. Put J = ~(L) + I. Then J 

is open in L because (I)(L) is open. Because L / I  is ~'p, by Corollary 4.5 we have 

J / I  = L p + L' + I / I  = ~ ( L / I )  < L / I .  

Thus J < L. Also, J is a pro-p algebra by Proposition 3.1 and finitely generated 

by Theorem 3.4. Hence I is open in L. | 

We now describe a series of subalgebras that will be useful for our purposes. The 

nth  d i m e n s i o n  suba lgeb ra  of an arbitrary Lie p-algebra L is defined by 

Dn(L) = Z ~/I(L)P'" 
i~>_n 

These p-ideals arise naturally in connection with the restricted universal envelop- 

ing algebra of L: see Section 8 and [RS]. Two simple consequences of the definition 

of the D n ( i )  are that [Dm(/), Dn(/)]  _C 7m+, ( / )  and Din(L) p C_ Drop(L) for 

each pair of positive integers m, n. 

COROLLARY 4.7: Let L be a finitely generated prop algebra. Then ¢(L)  = 

D2(L) and the set of all D,~(L) forms a neighbourhood base of O. 

Proof." The first part of the claim follows from Corollary 4.5. Since L/D,~(L) is 

finitely generated, nilpotent and of finite exponent, L/Dn(L)  is finite dimensional. 
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Thus each Dn(L)  is an 9rp-ideal, and hence open by Theorem 4.6. Now let I be 

an arbitrary open ideal of L. Since L / I  E 2rp, it is clear that Dn(L)  + I / I  = 

D n ( L / I )  = 0 for all sufficiently large n. Therefore Dn(L)  C_ I, and the second 

half of the claim now follows. | 

Before closing this section, let us remark that  if L is an arbitrary Lie p-algebra 

satisfying d i m L / D 2 ( L )  < co and L is any pro-~'p completion of L then 

L -~ lim L/Dn(L). 

5. P o w e r f u l  p ro -p  a lgeb ra s  

Let us now consider the notion of a powerful pro-p algebra. We shall see that  

these p r o p  algebras satisfy the property rk(L) = d(L). They will also play a role 

in our structure theory for pro-p algebras of finite rank. 

Definition 5.1: Let L be a p r o p  algebra. We say that L is p o w er fu l  if 

L ~C ~ ~-~' i f p i s o d d ;  | 
- [L--4, i f p = 2 .  

The definition of powerful seems more symmetric in the odd and even cases once 

we realise that  L is powerful precisely when L ~ C D3(L). Powerful pro-p algebras 

are clearly the analogues of powerful pro-p groups studied by Lubotzky and Mann 

in [LM1] and [LM2]. For our present purposes it suffices to study a slightly more 

general class of p r o p  algebras. We shall say that a pro-p algebra L is weak ly  

p o w e r f u l  if 7p(L) + (L') p C Lp 2. It is easy to see that the powerful and weakly 

powerful conditions are equivalent when p = 2. 

PROPOSITION 5.2: Let L be a weakly power[u1 pro-p algebra. Then 

1. L is nilpotent of class at most p, 

2. Dp,+I(L) = (LP') p = L p'+x = L {p'+~}, and 

3. dimDp,(L)/Dp,+x(L) >dimDp,+,(L)/Dp,+2(L) for each i > O. 

Proof: 1. Consider only the case that L is finite: the extension to the general 

case is standard. By assumption we have 7p(L) c_ L p2. But this forces 7p+l(L) C_ 

[L v2, L] C " /p~+ l (L)  - -  0 since L is nilpotent. 

2. Let us remark first that it is a consequence of the definition of a restricted 

Lie algebra that (x + y)P = x p + yP modulo %(x ,  y) for all x, y in L. We now 
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claim that  L v2 = (LP) {p}. Indeed, suppose x, y E L. Then 

xp2 q- yp2 = (xp) p -~ (yp)p = (X p -'k yP)P mod 7p(X p, yP). 

285 

But ~[p(x p, yP) C_ "rp~(L) = 0, and so the claim follows. Next we prove that  L p = 

L {p}. Indeed, x p + yP - (x + y)V modulo (LP) {p} since "yv(L) C L p2 = (LB){P}. 

Hence xV + y p = (x + y)P + z p for some z E L p. But then xP + y p = ( (x + y) + z) p, 

as claimed, since [L, L p] C_ ~p+l(L) = 0. The case i = 0 is now immediate. The 

case i _ 1 follows by induction and the identity Dp,+~ (L) = Dp, (L) p + ~p,+~ (L). 

3. Let x E Dv , (L)  and y E Dp,+I(L). Then (X + y)P :-- X p + yP -- x p 

modulo Dp,+2(L) because ~/p(x,y) C_ 7v,+~+(p_l)p,(L) = 0. Hence the map 

ri: Dp,(L) /Dp,+~(L)  --* Dp,+~(L)/Dp,+2(L) induced by the p-map is well de- 

fined. In fact 7ri is a surjection by part  2 and the fact that  F is perfect. (Notice 

that  ~rl need not be linear, unless F = Fp.) Therefore, dim On, (L)/Dp,+~ (n)  > 

dim Dp,+~ (L)/Dp,+2(L) since F is finite. | 

An argument similar to the proof of part  1 above shows that  a powerful pro-p 

algebra is nilpotent of class at most two. 

6.  P r o - p  a l g e b r a s  o f  f in i te  r a n k  

Recall from Definition 3.5 that  a pro-p algebra L has finite rank if there exists 

an integer r such that  every open p-subalgebra is r-generated. We now list a 

number of equivalent definitions of finite rank. The proof of the equivalence is 

straightforward. 

PROPOSITION 6.1: 

a pro-p algebra L. 

1. rk(L) = r. 

2. 

Let  r be a positive integer. The  following are equivalent for 

The least upper bound on the number  of  generators required to generate 

any closed p-subalgebra of  L is r. 

3. The  least upper bound on the number  of  generators required to generate 

any finitely generated closed p-subalgebra of  L is r. 

4. The  least upper bound on r k ( L / I )  for all 1 %  L is r. 

THEOREM 6.2: Let  L be a finitely generated weakly powerful pro-p algebra. 

Then rk(L) = d( L ). 
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Proof:  

every x E L define its weight by 

max{j  I x ¢ Dp~ (L)}, 
/ ] (x)  [ (X), 

By Proposition 6.1, it suffices to consider the case that L is finite. For 

For X C_ L define 

x ¢ 0 ;  
x-----0. 

But 7p(L) + ¢ ( L )  p C_ 

Proceeding inductively yields 

m--1 
pV(~,~) p.(~,,~) pV(~,~) 

Xm = Ym = ~ ai Yi m o d  Dpv(,~)+I (L). 
i=1 

However U(Xm) >_ v ( x O  for m _> i so 

m--1 
p~(*,~) p~(*,~)-~(*i) 

xm = Z a~ x i mod Dp,.(~,,,)+l (L) .  
i=1 

Thus Xm = X + Z for some x E ( X l , . . . , X m - 1 )  and z E L p~(*'~)+~. Hence 

( x l ,  . . . , x m - i ,  z, xm+l ,  . . . , xk  } = H.  However, this generating set has strictly 

greater weight than X, contradicting our choice of X. | 

Observe that,  in particular, finitely generated abelian pro-p algebras A satisfy 

the property rk(A) -- d(A) .  

We now show that in odd characteristic any pro-p algebra of finite rank contains 

a large powerful open p-ideal. 

L p2 = Dp2(L) ,  so that yV = E ; _ _ ~ l o / p y p  modDp2(L).  

m - 1  

YPm -- Z P p wP a~ Yl + mod 7p(L). 
i=1 

= E 
xEX 

Given H _< L we wish to show that d ( H )  <_ d (L) .  Assume to the contrary, and 

among the minimal generating sets of H choose one, X,  with u ( X )  maximal. Let 

X -- {xx , . . . , xk} ,  and assume without loss that u ( x l )  <_ u(x2) _< . . .  < u(xk ) .  

Using Proposition 5.2 we see that there exists a set Y = {Yx,..-, Yk} of weight 0 

such that y~(~')  = xi .  Now d i m L / ~ b ( L )  = d (L) ,  so Y is a linearly dependent set 

modulo O(L). Let m be minimal such that Ym lies in the F-span of {Yl, • •. ,  Ym-1} 
m--1 

modulo (I)(L), and put Ym = ~ i=1  aiYi  + w,  where w E (I)(L). Then 
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Definition 6.3: Let L be a finitely generated pro-p algebra. For each positive 

r denote by Tro(r, F) the p-subalgebra of sl(r, F) consisting of strictly upper- 

triangular matrices. Put  Vr(L) = N¢ ker ~, where the intersection is over the set 

of all restricted representations ~ : L --~ Tro(r, F). | 

Notice that  Dr(L) C Vr(L). Indeed, put T = Tro(r,F).  Certainly ~P(Dr(L)) C_ 

Dr(T), so it suffices to show that 7~(T) vj = 0 whenever ip j _> r. Now if we let 

t E ~/i(T) then the first (i - 1) diagonals above the main diagonal of t are zero, 

so t[~] -- 0. Because the p-map in T is simply exponentiation by p, we have 

t pj = 0, as claimed. 

PROPOSITION 6.4: Suppose that p is odd, r is a positive integer, and L is a 

finitely generated pro-p algebra. Then every r-generated open p-ideal N of L 

contained in Vr(L) satisfies [N, Vr(L)] C_ N p. 

Proof: Let us start  with the case that  L is finite. We begin by proving the 

following. 

CLAIM: Suppose that N _< V are p-ideals of L. Then either IN, V] _< D3(N) 

or there exists a p-ideal J of L of codimension 1 in D3(N) + IN, V] such that 

D3(Y) + [N,V,L] _< g < D 3 ( N ) +  [N,Y]. 

To prove the claim, first observe that D3(N) = N p + 3'3(N) because p _> 3. 

Now let M -- D3(N) ÷ [N, V], and assume to the contrary that M > D3(N). It 

is easy to see that  both M and D3(N) are p-ideals of L. By the nilpotence of 

L/D3(N),  we find that 

M > D3(N) + [M, L] -- D3(N) + [N, V, L]. 

Now put J1 = D3(N) + [N, V, L]. Then J1 is a p-ideal of L, and M/J1 is central 

in L/J1 and of exponent p. Thus there exists a p-ideal J of L with J1 _< J < M 

and d i m M / J  = 1, as required. 

Now put V = Vr(L) and assume that N is an r-generated p-ideal of L contained 

in V. By induction on the dimension of N, we now prove that IN, V] C_ D3(N). 

Using the claim above we may assume to the contrary that  there exists a p- 

ideal J of codimension 1 in M = D3(N) + [N, V], and factor by J to assume 

that N p = 0 and dim[N, V] = 1. It now follows that there exists a p-ideal 

K of L of codimension 1 in N and containing IN, V]. Indeed, the nilpotence 

of L implies that  N > [N, L] _> [N, V], and the existence of K follows from the 
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centrality of N/[N, L] in L/[N, L]. Observe next that since N/[N, V] is abelian of 

exponent p, we must have d(K/[N, Y]) -= d(N/[N, Y]) - 1 _ r - 1. Furthermore, 

dim[N, V] = 1, and so d(K) _< r. Now using the induction hypothesis we find that 

[K, V] < K p = 0. In particular, K is central in N and N / K  is 1-dimensional. It 

follows that  N is abelian and hence has dimension at most r. Thus ad(V) acts 

trivially on N. This leads us to the desired contradiction. 

Therefore, in the finite case, we have [N, V] C_ D3(N). In particular it follows 

that N is powerful and thus IN, V] C_ N p. 

Finally, consider the general case. From the finite case we know that 

[g, V~(L)] + I / I  C [N + I / I ,  V~(L/I)] C_ ( g  + I)P/I  = N p + I / I  

for all I % L .  But then IN, V~(L)] C_ NB = Np by Proposition 3.1 and Proposition 

5.2. | 

We remark that  Proposition 6.4 has an analogue in characteristic 2, namely 

that if N is an r-generated open p-ideal of L and N _< Vr(L) 2 then [N, V~(L) 2] C_ 

N 4. In particular, if L has rank r then V~(L) 2 is powerful. However we do not 

require this result, and we therefore omit the proof. 

COROLLARY 6.5: Suppose that p is odd and L is a prop algebra of finite rank r. 

Then V~(L) is a powerful open p-ideal of L with codimension at most r [log 2 r]. 

The proof of the corollary follows from Proposition 6.4 and the next lemma. 

LEMMA 6.6: Suppose L is a pro-p algebra of finite rank r. Then dimL / Dn ( L ) <_ 

r [log 2 n] for each positive integer n. 

Proof: The p-map acts trivially on each of the abelian factors D2, (L)/D2,+I (L). 

As L has rank r, each of these factors has dimension at most r. | 

The following is the analogue of a group-theoretic lemma due to Baer. 

LEMMA 6.7: Let L be a prop algebra and N ~c L. Then 

max{rk(N), rk(L/N)} _< rk(L) _< rk(N) + rk(L/N).  

In particular the class of pro-p algebras of finite rank is extension closed. 

Proof: The first inequality follows from Proposition 6.1. For the second, suppose 

that  rk(N) = r and rk(L/N)  = s. Let H be a d-generated open p-subalgebra 
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of L. We shall show that d < r + s. By Proposition 3.3 it suffices to show 

that d(H + I / I )  <_ r + s for arbitrary I % L .  Now r k ( N + I / I )  <_ r and 

( r k (L /N  + I))  <_ s, so replacing L by L / I  it suffices to consider the case that L 

is $'p. Let H = ( h i , . . . ,  hd}. Thus we may write each hi = f i ( a l , . . . ,  as) + li 

where a l , . . . , a s  C H,  fi is a word in the free Lie p-algebra, and li E H A N. 

Moreover there exist bl . . . .  ,br E H N N such that ( l l , . . . , I d}  = (b l , . . . , br} .  

Therefore H = ( a l , . . . ,  as, b l , . . . ,  br}, so d(H) < r + s. Therefore rk(L) < r + s, 

as required. | 

We are now ready to state the main results of this section. 

THEOREM 6.8: Let L be a pro-p algebra. 

1. Suppose that L has finite rank r. Then L is nilpotent of class c such that 

< ~ 2r, i fp  is odd; 
c 

- [ 2 r + l ,  l i p = 2 .  

It follows that the centre o[L  is open and satisfies 

r[log2(2r)], i fp  is odd; 
d i m L / ~ ( L )  <_ r[log2(2r + 1)], i fp  = 2. 

2. Conversely, assume that L is d-generated and d imL/~(L)  = n < c)c. Then 

rk(L) < p'~(d - 1) + n + 1. 

Proo[: 1. First assume that  p = 2 and consider Dr+I(L).  Notice that Dr+I(L) 

is finitely generated by Theorem 3.4. Therefore by Corollary 4.5 we find that 

• (Dr+I(L))  = Dr+I(L)  2 + Dr+I(L) '  C_ D2~+2(L). Then by assumption 

d i m n ~ + l ( i ) /  dimD2~+2(L) _< d(D~+I(L)) <_ r. 

Therefore ")'2r+i(L) = [Dr+I(L), rL] _C D2r+2(L), and hence "Y2r+2(L) -- "~2~+3(L) 

~ 0 .  

Now assume that  p is odd, and consider Dr(L).  Then by Corollary 6.5, Dr(L)  

is powerful. Thus ¢(Dr (L ) )  = Dr(L)  p C_ Dp~(L), and so 

d imD~(L) /Dp~( i )  <_ d(Dr(L))  <_ r. 

But then "72r+l(L) -- 0 as above. The result now follows by Lemma 6.6. 

2. Observe first that ~(L) is always closed, so that  in this case ~(L) is open. 

Hence by Theorems 3.4 and 6.2 and Lemma 6.7 we have 

r k ( / )  _< rk(~(L)) + rk(L /~(L) )  <_ d(~(L)) + n <_ pn(d - 1) + 1 + n. | 
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Let us remark that there is another way to view a converse to part 1 of the 

theorem. 

PROPO~CITION 6.9: Suppose L is a d-generated pro-p algebra that is nilpotent 

of clas~ c. Then rk(L) _< p t ( d -  1) + t  + 1, where t = )-~=ldi[logp(s/i)] and 

8 = . 

Proof." Because "~c+I(L) = O, Ds(L) is abelian. Observe that dimL/Ds(L) 

is bounded by a function t which depends only on d, s, and p. Indeed, t = 

~'~=1 di[l°gp(s/i)] is a crude upper bound of dimL/D~(L), for if L is generated 

by {xl , . . .Xd} then L is spanned, modulo D~(L), by all products of the form 

[Xkl,Xk2,...,xk,] p~ where ip / < s. For each value of i there are d i choices for 

the i-tuple (xkl,xk2,. . .  ,xkl), and [logp(s/i)] values for j in the range 0 _< j _< 

[logp(s/i)] - 1. By Theorem 3.4, it follows that d(D~(L)) < p t ( d -  1) + 1. Thus 

by Lemma 6.7 and Theorem 6.2 we have 

rk(L) _< rk(D~ (L)) + rk(L/D8 (L)) <_ d(D~ (L)) + dim L/D8 (L) <_ pt (d - 1) + t + 1. 

This is the required bound on the rank of L. | 

COROLLARY 6.10: Let L be a pro-p algebra. Then the following are equivalent: 

1. L has finite rank; 

2. L is finitely generated and contains a powerful open p-ideal; 

3. L is finitely generated and the centre of L is open; and 

4. L is finitely generated and nilpotent. 

7. Uniform pro-p algebras 

For the sake of brevity, let us put Pi(L) = Dp, (L). 

Definition 7.1: A p r o p  algebra L is said to be u n i f o r m  if it is finitely generated 

and powerful, and for all i we have dimPi(L)/P~+l(L) = d(L). | 

PROPOSITION 7.2: I lL  is a finitely generated powerful pro-p algebra then Pk( L ) 

is uniform for ali sufficiently large k. In particular, every pro-p of finite rank 

contains a uniform open central p-ideal. 

Proof'. Write di = dimPi(L)/Pi+I(L). Then by Proposition 5.2, we have di >__ 

di+l for all i. Thus there exists a positive integer k for which dm = dk whenever 
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m >_ k. Now, also by Proposition 5.2, we find that  Pi(Pk(L))  = Pk+i-l(L) .  

Hence Pk(L) is uniform. The remaining part of the proposition now follows from 

Corollary 6.10. | 

PROPOSITION 7.3: The following are equivalent for a finitely generated powerful 

pro-p algebra. 

1. L is uniform. 

2. d( Pi( L ) ) = d( L ) for a11 positive i. 

3. d(L) = d(H) for every powerful open p-subalgebra H of L. 

Proo~ This follows from Proposition 5.2 and Theorem 6.2. | 

COROLLARY 7.4: 

1. I f  L is a pro-p algebra of finite rank, then L contains an open p-ideal H 

such that every open p-ideal of L contained in H is uniform. 

2. I f  H and K are open uniform p-subalgebras of some p r o p  algebra L then 

d(H)  = d (g ) .  

It is now possible to make the following definition. 

Definition 7.5: Let L be a p r o p  algebra of finite rank. Then the u n i f o r m  

d i m e n s i o n  of L is udim(L) = d(H),  where H is any open uniform p-subalgebra 

of L. | 

For the remainder of this section we will study uniform pro-p algebras with a 

view to determining a concrete structure theory for arbitrary pro-p algebras of 

finite rank. 

PROPOSITION 7.6: Let L be a finitely generated powerful pro-p algebra. Then 

L is uniform if and only i f  its p-map is non-singular. 

Proof'. If L is uniform then by Proposition 5.2 the p-map induces a bijection 

7r~: P~(L)/Pi+I(L) ~ Pi+I(L)/Pi+2(L) for all i. Assume that there exists a non- 

zero element y in L which satisfies yP = 0. Choose i so that  y is contained in 

PI(L) but not in Pi+I(L). But then ~ri is not injective. 

Conversely assume that L is not uniform, so that there exists a positive integer 

i for which 7ri is not injective. Thus there exists an element y lying in P~(L) but 

not in Pi+I(L) such that  yP E P~+2(L). But by Proposition 5.2, Pi+2(L) = 
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P~+I(L){P}, so there exists z • P/+I(L) with z p = yP. Hence x = y - z # 0 but 

x p = 0 since z is central. | 

Next we shall define an action of the formal power series ring F[[t]] on elements 

of a pro-p algebra L. We consider F[[t]] as a pro-p algebra by defining the Lie 

product to be trivial, and defining the p-map by 

: =  O~ i t . 

i_>o i_>o 

In the case that  the field is Fp this is simply the pro-p algebra described in 

Example 2.4. 

Let h • L. If a( t )  = ao + a l t  + . . .  + a,~t m • Fit] then define 

pm 
h a(t) = aoh + a l h  p + "-. + a m h  • 

Let (ai(t))i>_o and (bi(t))i>o be sequences of polynomials converging to the same 

limit in F[[t]]. We shall show that the sequences (ha'(t))i>0 and (hb~(t))i>_o con- 

verge in L with the same limit. Fix 1 %  L, and let n be the least integer such 

that  L p" C I.  For all sufficiently large i and j we have ai( t )  = a j ( t )  mod t n. 

Thus h a~(t) =- h a~(t) mod I. Therefore (hadt))i>o is Cauchy and by Proposi- 

tion 3.1 converges with limit ha, say. Similarly (hbdt))i>o converges with limit 

hb. Now given I we may choose j sufficiently large that bj( t )  =_ a j ( t )  mod t",  

h aj(t) = ha mod I, and h b~(t) -- hbmod I. Therefore ha - hb =-- h aj(t) - h b~(t) - 

h aj(t)-b~(t) =- 0 mod I. As this occurs for arbitrary I we have ha = hb, as re- 

quired. Therefore we may make the following definition. For A(t) 6 F[[t]] define 

h x(t) = limi--.oo h a'(t), where (ai( t)) i>o is any sequence of polynomials converging 

to A(t). It follows easily from the definition of the action that  if a ( t )  = ~ ait  i 

and/~(t) = ~ bit i lie in F[[t]] then 

h a(t)+#(t) = h ~(t) + h p(t) and h (a(t)Ip]) = (ha(t))  ~ 

We now claim that if L = < a l , . . . , a d l  is powerful then L = ( a l l - } - " ' ' ~  (adl .  

The proof is in the case that  L is ~'p: the extension to infinite L is standard. 

Observe that  L / L  p = <al) + . . . +  <ad) + L P / L  p. Applying the surjection induced 

by the p-map we find that L P / L  p2 is generated by {aPl + L P 2 , . . . ,  a p + L p2 }. Now 

because L p2 = O(LP),  we find that L p = (a~, . . . ,aPd) .  The claim now follows 

from the fact that L p is central. We are now ready to establish the following: 
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PROPOSITION 7.7: Let L be a d-generated uniform abelian p r o p  algebra. Then 

= F[[t as topological Lie p-algebras. 

Proof: Let { a l , . . . a d }  be a generating set for L. Then 

L =  

Therefore we may express each element of L in the form a~ 1 + . - -  + ad ~ with the 

Ai E F[[t]]. In fact we shall show that this expression is unique. In light of the dis- 

cussion above it suffices to prove the expression for 0 is unique. Assume there exist 

A1, . . . ,  Ad not all zero such that  a~ 1 + . . .  + ad ~a = 0. Now d i m L / L  p = d so con- 

sidering the exponents modulo t we find each A~ - 0 mod t. Therefore there exist 

~ , , . . - ,* ;d  such that  t¢~ ] -- A, for all i, and so (a~;' + . - . + a ~ a )  p - -  O. However the 
~ • .-~-a~ d O. preceding proposition shows that  the p-map is non-singular, so a 1 +. = 

Proceeding inductively we arrive at the desired contradiction. Consequently we 

obtain a bijection ~: L --* ~]~d F[[t]] given by ~(l) = (A1,. . . ,  An) when l = E a~'. 

It is straightforward to verify that  this is a homomorphism of restricted Lie al- 

gebras. From Theorem 4.6 it is easy to see that  every homomorphism from a 

finitely generated pro-p algebra onto another is continuous, and thus ~o is con- 

tinuous. Therefore since L and ~ d  F[[t]] are compact and Hausdorff, they are 

homeomorphic. II 

The following result closely describes the structure of pro-p algebras of finite 

rank. 

THEOREM 7.8: Let L be a pro-p algebra of tlnite rank. Put  s =udim(L).  Then 

there exists a central open p-ideal U of  L such that U ~- ~)~ F[[t]]. 

Proo~ It follows from Proposition 7.2 and Corollary 7.4 that  L contains a 

uniform open central p-ideal U of rank s. By Proposition 7.7, U is isomorphic to 

~ F[[t]] as topological restricted Lie algebras, as required. II 

Note that it is not possible to bound the codimension of U in L in terms of 

rk(L). 

8.  P r o o p  g r o u p s  o f  f i n i t e  r a n k  

In this final section we illustrate a concrete connection between the study of pro-p 

algebras and pro-p groups. Recall the graded restricted Lie Fp-algebra associated 
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to a group G defined by 

gr(a) = (~  Dm(a)/Dm+l(C). 
m ~ l  

Here Dm(G) represents the mth d imens ion  s u b g r o u p  of G given by Dn(G) = 
G A (1 + A(G)n), where A(G) denotes the augmentation ideal of the group ring 

FpG. Commutation and exponentiation by p in G induce the restricted Lie 

structure on gr(G). In fact we are more interested in its pro-gYp completion, 

gr(G), which we call the assoc ia ted  pro-p a lgebra  of G and denote by £(G). 

In [L1], Lazard gave an explicit description for the dimension subgroups of G, 

namely 

D~(C)= I-[ .y,(alP'. 
ipJ >_m 

The dimension subalgebras of a Lie p-algebra arise in a similar fashion. Indeed, 

let w(L) represent the augmentation ideal of the restricted universal enveloping 

algebra of L. In [RS] it is shown that  setting 

DIn(L) = L n w(L) "~ 

for each m >_ 1 is consistent with the definition DIn(L) = ~ipi>m ~/i(L) ~ given 

in Section 4. 

In what follows, we shall use freely the notation we have established for pro-p 

algebras to p rop  groups as well. The reader is referred to [DDMS] for the basic 

theory about pro-p groups of finite rank. 

LEMMA 8.1: Let G be an arbitrary group. Then for each pair of positive integers 

m and n, [D.,(G), D.(G)] C ~'m+n(G)Dm+,~+i(G). 

Proof: We begin with the case [Dm(G), G] C 7m+I(G)Dm+2(G). It suffices to 

show that  if ip / >_ m, x E 7~(G) and y e G, then [x p~, y] C_ 7m+I(G)Dm+2(G). 
Let H = ([x,y],x). By Hall's collection formula 

J 
[x pj , y] = Ix, y]PJ mod (H') pj 1-I ~p~ ( H)pi-~" 

k = l  

Without loss we may assume that  j > 1. Since 

[x,y] po E 7~+1(G) p~ C_ D.~+pj(G), 
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(H')p J c  2i+i(C)p c D2m+ J(G), 

~pj(H) C_ 7{p~+l(G) C_ 3'm+l(G), and 

"yp~(H) p~-~ C ~ ~ IG ~pj-~ C Dm+p(G) ifk ~ j,  - -  l i p  . + l k  ] - -  

the proof of this case follows. 

Now [Dm(G),'Ti(G)] C_ [D,~(G),iG] c_ 7m+i(G)nm+2i(G). The result follows 

from another application of Hall's collection formula. | 

See Riley, [R], for stronger results of this type. 

LEMMA 8.2: Let G be a finitely generated pro-p group. Then 

L(G) = 1] Di(G)/Di+l(G), 
i>1 

and for each positive integer m 

Dm(£(G)) = 1] D~(G)/D~+I(G). 
i > _ m  

Proof Because G is finitely generated, G/@(G) = DI(G)/D2(G) is finite. 

Therefore gr(G) is finitely generated as a restricted Lie algebra. Put  Em = 

(~i>m Di(G)/Di+I(G) for each m. Then each factor gr(G)/Em lies in ~'p be- 

cause G/Dm(G) is a finite p-group. Now, using Theorem 4.6 and an 'unravelling' 

map similar to that employed in Example 2.4, it is not difficult to check that  

£(G) = limgr(G)/Em ~ I-[ Dm(G)/Dm+I(G). 
r n>  l 

Therefore using Lemma 8.1 we see by induction that  

"h(£(G)) = I I  "~k(C)Dk+l(C) 
k>_i Dk+I(G) 

for each i _> 2. The result now follows using the formulae for dimension subgroups 

and dimension subalgebras given above. | 

For the remainder of the article let us abbreviate £(G) by L, and for each 

i >_ 1 put di = logp IDi(G)/Di+I(G)I. From the preceding lemma it follows that  

d(G) = dl = d(L) and di = dimDi(L)/Di+l(L) for each i > 2. Also observe 

that  if G is a finitely generated p rop  group then G is powerful if and only if L 

is abelian. Furthermore, in this situation rk(G) = rk(L) because rk(L) = d(L) 
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by Theorem 6.2 and rk(G) = d(G) by [DDMS, Theorem 3.8]. This motivates us 

to consider the relationship between rk(G) and rk(L) for general pro-p groups of 

finite rank. 

To simplify the statements of the following results, we set e = 0 if p is odd and 

e = l i f p = 2 .  

LEMMA 8.3: Suppose that G is a pro-p group with finite rank r. Then 

1. di = 0 t'or some i < 2r + e, 

2. L is nilpotent of c/ass at most 2r - 1 + ~, 

3. D~+,(L) is abelian, and 

4. d ( n t ( i ) )  = d(Dt(G)) <_ r for all t >_ r + c. 

Proof: 1. Since d(D.+I(G))  = logp ID~+I(G)/¢(Dr+I(G))I <_ r and 

O(D~+I(G)) = Dr+I(G)PDr+I(G) ' C_ D2r+2(a), 

it follows that  logp IDr+I(G)/D2r+2(G)I <_ r. Hence dr+l + " "  + d2r+l <_ r, so 

that  di = 0 for some i < 2r + 1. When p is odd, Dr(G) is powerful according 

to theorem due to Lubotzky and Mann, [DDMS, Proposition 3.9]. Therefore 

¢(D, (G) )  = Dr(G)P C_ D2r+I(G).  Counting again we find that  d2r = 0. 

2. This follows at once from part  1 and Lemma 8.2. 

3. This is a corollary of part  2. 

4. Let us prove only the case t -- r + e for the general case is similar. Sup- 

pose first that  p is odd. Then, as above, D,(G) is powerful. In other words, 

¢(Dr(G))  = Dr(G) p. We claim that  this implies that  ~(D~(G)) = Dpr(G). 

Indeed, d( D, (  L ) ) <_ r forces 

~2r(a) c [D~(G),,G] c ~(D~(a)). 

Thus Dp~(G) = Pr(GF'ypr(a)  = D~(GF = ¢ (D. (G) ) .  Since ~2~(L) = 0, clearly 

¢ ( D , ( L ) )  = D~(L) p = Dp~(L). Hence d(D~(L)) = d, + . . .  + dp~_~ = d(Dr(G)), 

as required. 

Now assume that  p = 2. Then, as above, d(D~+I(G)) <_ r forces 72~+1(G) C_ 

¢(D~+~(G)). But D.+I(G)/D~+I(G) 2 is abelian, so that  

¢(D,+I(G)) = Dr+~(a)  2 = D2~+2(G). 

Because ~/2~+1(L) = 0, certainly ¢(D~+I(L)) = D~+I(L) 2 = D2,+2(L). Thus 

d(D,+I(L))  = d,+l + ' "  + d2~+l = d(D~+~(a)). | 
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LEMMA 8.4: Suppose that G is a prop  group such that L finite rank s. Then 

the following statements hold. 

1. d~ = O for some i <_ 2s + e. 

2. L is nilpotent of class at most 2s - 1 + e. 

3. d(Dt(G)) = d(Dt(L))  <: s for all t >_ s + e. 

4. D~+~(~+2)(G) is powerful. 

Proof: The proofs of parts 1 and 2 are essentially the same as those of Lemma 

8.3. For part 3, let us prove only the case that t =- s + e. Suppose first that 

p is odd. Then, by part 2, ¢2(D~(L)) = D~(L) p = Dp~(L). By part 1 we have 

72~(G) C D28+l(G), and hence 7re(G) C Dm+I(G) for all m _> 2s. But then 

Dps(G) = Ds(G)P~/ps(G) = Ds(G)PDps+I(G) = N Ds(G)PDm(G) = D~(G)v. 
rn >_ps 

Therefore Dps(G) C_ ~(Ds(G)),  and consequently d(Ds(G)) <_ d~ + . . .  + dp~-i = 

d(Ds(L)) <_ s. It follows that  Ds(G) is powerful. This implies that  ¢(Ds(G))  = 

Dps(G) and in turn that d(D~(G)) = d(D~(L)). 

Finally, let p = 2. Arguing as above yields ¢(D~+I(L)) = D2~+2(L) and 

D28+2(G) = D~+l(G)272~+2(G) = D~+I(G) 2 = ~(D~+I(G)). It follows that 

d(Ds+I(G)) = d(D~+I(L)). This finishes the proof of part 3. 

Taking t = 2s + 2 in part 3 we find that d(D2~+2(G)) <_ s. Recall that 

D2~+2 (G) = Ds+l (G) 2. It now follows by the characteristic 2 version of Lubotzky 

and Mann's theorem that  D2~+2(G) is powerful. This proves part 4. I 

We are now ready for our main results about the close relationship between 

the rank of a pro-p group and the rank of its associated pro-p algebra. 

THEOREM 8.5: Let G be a pro-p group. Write r =rk(G) and s =rk(L).  Then 

1. rk(G) is finite i f  and only i f rk (L)  is finite; moreover 

2. rk(G) _< s + s[log2(s + e(s + 2))] and rk(L) _< r + r[log2(r + e)]; and 

3. ud im(G)=udim(L) .  

Proof: 1. From Lemmas 8.3 and 8.4 we see that if G has finite rank then L 

has an open powerful p-subalgebra, and conversely. The result now follows from 

Corollary 6.10 and its group-theoretic counterpart [DDMS, Theorem 3.13]. 

2. We can assume from part 1 that r and s are finite. Suppose that p is 

odd. Then by [DDMS, p.61] we have rk(G) _< rk(Ds(G)) + rk(G/Ds(G)) .  But 
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Ds(G) is powerful by part 4 of Lemma 8.4, so that rk(Ds(G)) = d(Ds(G)) <_ s 

by [DDMS, Theorem 3.8] and part 3 of Lemma 8.4. Also 

rk(G/Ds(G))  <_ logp [G/D~(G)[ = d imL/D~(L)  <_ s[log 2 s] 

by Lemma 6.6. Therefore rk(G) _< s + s[log2s], as required. On the other 

hand, by Lemma 6.7 we have rk(L) _ rk(D~(g)) + rk(g/D~(L)) .  Since D,(L)  is 

abelian by Lemma 8.3, we have rk(D,(L)) = d(D~(L)) <_ r by the same Lemma 

and Theorem 6.2. Also 

rk(L/D~ (L) ) <_ dim L / D ,  (L) = logp ]G/D~ (G)] <_ r [log 2 r], 

by the group-theoretic analogue of Lemma 6.6. Thus rk(L) ~ r + rVlog 2 r]. 

Now suppose that  p = 2. Because D2~+2(G) is powerful by Lemma 8.4, similar 

arguments to those above yield 

rk(a)  <_ rk(D28+2(a)) + rk(a/D2s+2(a))  <_ s + s[log2(2s + 2)]. 

On the other hand, since D~+I(L) is abelian by Lemma 8.3, it follows that 

rk(L) < rk(D~+l(L)) + rk(L/D~+l(L))  <_ r + r[log2(r + 1)]. 

3. By [DDMS, Corollary 4.3] and Proposition 7.2 we can choose m so large 

that both DIn(G) and DIn(L) are uniform. Therefore by Lemma 8.3 we have 

udim(a) = d ( D . ~ ( O ) )  = d ( D m ( L ) )  = udim(L), a 

Lubotzky and Mann proved in [LM2] that if G is a pro-p group of finite rank 

then it is p-adic analytic of dimension udim(G). Thus udim(L) is the dimension 

of G. 

As an application we obtain a quantative version of a result due to Lazard, 

[L2], and Shalev, [S]. See also Riley, [R]. 

COROLLARY 8.6: Let G be a pro-p group. 

1. I f  G has finite rank r then gr(G) is nilpotent of class at most 2r - 1 + e. 

2. Conversely, assume that d = d(G) and gr(G) is nilpotent of class c. Then G 

has finite rank bounded by a function old,  c and p only. Namely, rk(G) _< 

s+s[log2(s+c(s+2) )], where s = p t ( d - 1 ) + t +  l and t = ~ = 1  di [logp(c/i)]. 

Proof." The first part follows from Lemma 8.3. For the second part put L -- L:(G) 

as before. Then d = d(L) and %+1(L) = 0. Hence by Proposition 6.9 we find 

that  rk(L) < pt(d - 1) + t + 1. The result now follows by Theorem 8.5. | 
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